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of the crystal shape factor seems also to be appropri- 
ate for the analysis of the fine structure of the diffrac- 
tion spots of multiply twinned particles. Calculations 
to explain the results of experimental investigations 
of multiply twinned gold particles (Hofmeister, 1984) 
are in preparation. 
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Abstract 
X-ray scattering measurements have been made in 
situ on highly oriented pyrolytic graphite intercalated 
with FeC13 to stage 4 in a sealed glass tube at 620 K. 
It has been found that the FeCI3 is in a two- 
dimensional liquid state at this temperature and that 
the stacking of the sets of ordered graphite layers 
(ABAB) that bound the intercalant is nearly random. 
Through a novel modeling of L scans for 10.L, 11.L, 
20.L, 21.L, 30.L and 22.L, a good fit has been achieved 
by using 60% of a preferred (A-A) stacking of sets 
with a broad lateral distribution about the ordered 
position. The remaining 40% of the sets are stacked 
with complete translational randomness, without 
regard to the normal graphite crystallography. This 
sliding randomness remains compatible with 
Daumas-Herold domain formation. 
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I. Introduction 
A variety of structural behavior appears in graphite 
intercalation compounds (GIC's) depending criti- 
cally on the molecular nature of the species interca- 
lated within the graphite host. With the acceptor 
compounds, there are often rather complex sequences 
of ordering reactions involving transitions from liquid 
to incommensurate solid to commensurate solid 
(Dresselhaus & Dresselhaus, 1981; Solin, 1982; 
Moret, 1986). In the case of FeC13, beginning with 
the early electron diffraction study by Cowley & Ibers 
(1956), there has been extensive structural charac- 
terization, mainly by Metz and co-workers (Hohlwein 
& Metz, 1974; Metz & Schulze, 1975; Metz & 
Hohlwein, 1975). A major feature of these photo- 
graphic studies, common to all the GIC's, has been 
the occurrence of well defined stages in which, for 
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898 STACKING DISORDER IN FeCI3-GRAPHITE 

stage s, a layer of FeCl3 is regularly spaced between 
s layers of graphite (Dresselhaus & Dresselhaus, 
1981; Solin, 1982; Ulloa & Kirczenow, 1986a, b). The 
FeCl3 is particularly interesting because it appears to 
intercalate as a layer of the crystal (Cowley & Ibers, 
1956; Metz & Schulze, 1975) which then remains 
incommensurate with its graphite host at room tem- 
perature. Furthermore, in stage s-> 2, it is thought to 
be nearly uncorrelated from layer to layer as if one 
could slip a sandwich of FeCl3, in which a central 
Fe layer is octahedrally coordinated with two layers 
of Cl (Wooster, 1932), in between two graphite 
hexagonal net planes with minimal host-intercalant 
interaction. In this study we have concentrated on 
the stage-4 FeCI3-GIC where, in general for stage 
index s, we call the single group of s graphite planes 
separating the intercalant a 'set'. Fig. 1 shows a pos- 
sible sequence of graphite sets and FeCla for the 
stage-4 compound. 

The formation of the stage structure is controlled 
by the temperature of the graphite host and the pres- 
sure of vaporized intercalant in contact with it. We 
can thus obtain the desired stage by controlling these 
conditions. The investigations of FeCla-GIC's have 
so far been carried out on samples quenched to room 
temperature from their high-temperature equilibrium 
state, at which temperature the intercalant may exist 
as a liquid or two-dimensional (2D) dense gas 
arrangement of molecules. Our current interest is in 
the X-ray determination of both the stacking sequence 
of the graphite layers and the structure of the FeCl3 
intercalant in stage-4 FeCIa-GIC at elevated tem- 
peratures. In this paper, we confine our attention to 
the first issue and consider the intensity distribution 
along the c* axis at various values of {H, K}; in a 
subsequent paper we will consider the in-plane inter- 
calant structure. 
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Fig. 1. Proposed stacking sequence of the graphite layers and the 
FeCl 3 intercalant in a stage-4 GIC. The stacking of graphite sets 
is shown as A-A; i.e. an A plane at the origin is followed after 
FeC! 3 by another A at the origin. (Across the FeCl 3 the planes 
are A/ B.) 

Studies of the stacking disorder in layered materials 
have been made by many investigators from both 
theoretical and experimental viewpoints; seminal 
among the former are the treatments of Hendricks & 
Teller (1942), Kakinoki & Komura (1965), Kakinoki 
(1967), Jagodzinski (1949) and Warren (1969). It 
would therefore be simplest for us to apply an 
appropriate version of one of these to our findings. 
However, the intensities we report here along the L 
lines in reciprocal space show a dependence on the 
{H, K} Miller indices that has not been previously 
detailed, although Samuelsen, Motet, Fuzellier, 
Klatt, Lelaurain & Herold (1985) have reported 
similar effects in HNO3-GIC's. We thus propose a 
new variation on the intensity analysis for these 
layered materials which gives a good fit to our data 
and provides some insight into staging. 

II. Experimental 
1. Sample preparation 

A piece of highly oriented pyrolytic graphite 
(HOPG) of dimensions 8 x 12 x 0.5 mm was kindly 
supplied by Dr A. W. Moore with a c-axis mosaic 
spread of 0-5 ° FWHM (full width at half maximum). 
This was held in place in a thin-walled 12mm 
diameter glass tube by two gently grooved 8 mm cylin- 
drical glass tubes at the top and bottom, concentric 
with the outer tube and sealed to it. The bottom 
support tube was extended beyond the end of the 
thin-walled outer tube to make a cavity for FeCl3. 
Three pieces of 99.9% pure iron wire were placed at 
the bottom of this composite tube. Because FeCl3 is 
extremely hygroscopic, the tube was evacuated and 
repeatedly heated to ensure that no water remained. 
Chlorine gas was then introduced into the tube and 
the iron was heated slightly and reacted immediately 
to form FeCl3. A residual chlorine atmosphere of 
40 kPa was sealed inside the tube together with the 
graphite sample and the FeC13. The (composite) tube 
was held vertically in a two-zone furnace, mounted 
on the X-ray diffractometer, with the FeCl3 heated 
to 495 K in the bottom part of the 8 mm tube while 
the graphite was held at 623 K. The intercalation to 
stage 4 took three days. The sample was centered at 
a window in the upper zone of the cylindrical furnace 
which allowed the X-ray beam to pass through and 
which was covered with a thin aluminium foil to 
prevent convection. The sample thickness was chosen 
so that, after intercalation, we would have a near 
optimal thickness for transmission measurements 
with Mo K a  X-rays. 

2. X-ray measurements 

The X-ray generator was a Rigaku RU-200 with an 
Mo rotating anode in point focus geometry. The fur- 
nace was mounted on an x - y  translation stage set on 
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a Huber diffractometer equipped with two (+20 °) 
large goniometer arcs to allow for adjustment of the 
sample position. Two sodium iodide scintillation 
detectors were used, one of which monitored the 
incident beam which had been monochromated with 
vertically bent pyrolytic graphite. The (vertical) focus 
was at the sample position where the beam cross 
section was 2 mm (vertically) × 0-4 mm (horizontally, 
with a slit). The horizontal divergence of the incident 
beam due to the mosaic spread of the graphite mono- 
chromator was estimated to be less than 0.3 ° by 
measuring the profile of a silicon crystal reflection. 
The vertical divergence was 2 °, which is not critically 
related to the resolution of the present intensity 
measurements which could all be made in a horizontal 
scattering plane. A 0.6 mm scatter slit was placed 
3 cm from the sample which, together with a receiving 
slit of 0.3 mm, gave an angular acceptance of 0.1 °. 
Vertically, the diffracted X-rays were restricted to 4 °. 
(For the 10.L scan, the horizontal acceptance angle 
was 0.03°.) 

As shown in Fig. 2, the Bragg peaks in a 0-20 
radial scan along a 00.L line have sharp profiles, 
including clear K a l  - Ka2 splitting, indicating a good 
stage-4 periodicity along the c axis with no obvious 
trace of other stages. From this 00.L measurement, 
the lattice parameter c was determined to be 
19.70(5) A,. By analyzing the 00.L integrated intensity 
data we also obtained the positional parameters of 
the graphite layers due to intercalation as well as the 
temperature factors. In the model calculation for the 
stacking disorder of the graphite layer sets, these 
refined parameters were adopted, but their influence 
was small and their discussion may be postponed. 
[The c-axis spacing may thus be treated as 3 x 3.35 
plus a gallery spacing (ds) of - 9 .65  A.] Fig. 3 shows 
a typical rocking curve of 00.L reflection which gives 
a measure of the mosaicity of the intercalated graphite 
sample at the elevated temperature. From this figure, 
the mosaic spread can be estimated to be - 1 . 8  ° . This 
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Fig. 2. Mo Ka intensity distribution in a 0-20 radial 00.L scan 
indicating a well staged sample for stage 4 with c = 19.70 (5)/~. 
The Ka I -K~2 splitting is clear. 

mosaicity was small enough to permit an analysis of 
the profile distribution on H K . L  lines along the c* 
axis, even though it had to be corrected for in 
analyzing the profiles, particularly for higher { H, K } 
indices. 0-20 radial scanning in the HK.O plane gave 
the intensity distribution shown in Fig. 4. In this 
pattern, there are no peaks associated with the FeCl 3 
crystal structure indicating that at 623 K the FeCl3 
molecules form a liquid whose detailed structure, 
which can be barely seen in the weak diffuse back- 
ground, will be discussed in a later paper. (The glass 
sample tube scattering has been removed with slits.) 
The sharpness of the HK.O graphite peaks (about 
0"25 ° FWHM) shows that the internal structure of 
the graphite layers is comparable to that of the 
original HOPG. 

H K . L  intensity distributions along the c* axis were 
obtained in transmission on L lines at intervals of 
~L=0.1  from L = - I . 5  to L--10.  In analyzing the 
HK.  L intensity distribution, a monotonically varying 
background intensity (due mainly to liquid scattering 
from the FeCl3 intercalant and Compton scattering) 
was treated as a linear function of L and subtracted 
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Fig. 3. Rocking curve at the 00.17 peak showing a mosaic spread 
whose FWHM = 1.8 °. 
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Fig. 4. 0-20 radial scan in the HK.O plane, indicating sharp 
in-plane graphite reflections and the absence of any FeCI3 crys- 
talline peaks. The weak diffuse bump peaking at 0= 11.3 ° is 
from the 2D FeCI3 molecular liquid. 
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from the observed profiles so as to make the best fit 
to calculation. The observed intensity was then cor- 
rected for polarization and for an absorption factor 
for asymmetric transmission geometry. The instru- 
mental peak broadening along L, associated both with 
the mosaicity of the sample (Kan, Misenheimer, For- 
ster & Moss, 1987; Thompson, Moss & Misenheimer, 
1988) and the resolution function due to the beam 
divergences in the optical system, was superposed on 
the calculated intensity distribution as part of the 
fitting procedure. 

Fig. 5 shows the observed intensity profiles of the 
HK.L reflections along lines of {H, K}=cons tan t .  
Background intensities mentioned earlier have been 
subtracted from the data and polarization and absorp- 
tion corrections have been made. Intensity scales are 
indicated in arbitrary units, but all intensities were 
normalized to the monitor counts of the incident 
X-ray beam and the relative intensities among the 
scans are correct. Included also in Fig. 5 are the fits 
to our model calculations, discussed in the following 
section. 
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Fig. 5. Comparisons of observed and calculated intensity distributions for the (a) 10.L, (b) 11.L, (c) 20.L, (d) 21.L, (e) 30.L and ( f )  
22.L lines. The experimental points are all on one normalized intensity basis through monitor counting of  I o and they are corrected 
for polarization and absorption effects. Background has also been subtracted. The model calculations are described in the text with 
model parameters given in Table 1. 
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It may easily be shown (Warren, 1969) that the 
H - K = 3n (n = integer) reflections have the same 
intensity distribution as the 00.L reflections under the 
condition that the shift vector between the graphite 
layer sets is one of the three A-, B- or C-type shift 
vectors in the xy plane [0, ~a~ +~a22, ~a~2 +]a2]. Figs. 
5(b), (e) and ( f ) ,  however, show broad profiles, in 
spite of sharp 00.L reflections, and thus require the 
existence of some random stacking of these sets. As 
distinguished from H - K = 3n, the reflections of H - 
K =3n  + 1 may be broadened by stacking disorder 
as a result of a mixing of the A-, B- and /or  C-type 
shift vectors. However, the random mixing of such 
regular vectors will not give any { H, K } index depen- 
dence for those reflections. That is, 10.L, 20.L and 
21.L reflections necessarily have the same intensity 
distribution along L. Figs. 5(a), (c) and (d) display 
real differences in their L-dependent profiles and we 
therefore propose below a new model for stacking 
disorder in explanation of our data. 

III. Structure model and calculation 

The stage 4 structure is treated as an alternating 
sequence of sets of four (perfect) A B A B  graphite 
layers together with an FeCI3 layer (see Fig. 1). We 
should notice, as mentioned in the last section, that 
the l l.L, 22.L and 30.L reflections in Fig. 5 have 
considerably broader peaks than the 00.L intensity 
distribution in Fig. 2. This fact requires that the lateral 
correlation between the graphite layer sets along the 
c* axis not extend to long inter-set distances. This 
short correlation length does not, however, mean that 
the three kinds of sequences of A-A,  A - B  and A - C  
between the sets are randomly mixed, because for 
such random mixings the HK.L reflections of H -  
K = 3n retain sharp profiles. Thus, the broadening in 
the H - K = 3n profiles must be due to an interruption 
of A-A,  A - B  and/or  A - C  stacking of the graphite 
layer sets. This truncation of correlation over a short 
distance can be achieved in two distinct ways. One 
involves a rotational or twist disordering (Kan et al., 
1987) and the other involves a translational disorder 
as invoked by Samuelsen et al. (1985) for the ordered 
state of HNO3 in graphite. For our data, translational 
disorder was incorporated in a model to explain the 
profiles; in staged materials with staggered domains 
(Ulloa & Kirczenow, 1986a, b) twist defects would 
not be energetically likely. Translational disorder 
caused by other than the definite A-A,  A - B  and A - C  
shift vectors should be formulated with some distribu- 
tion function for the stacking probability, with 
fractional coordinates in the xy plane. This type of 
fractional stacking fault, which is required by the 
H -  K = 3n reflections, will also help us understand 
the variation in the intensity distributions along the 
H - K = 3n + 1 lines; i.e. why the maxima along the 
20.L line are broader than along 10.L. 

To reveal these features in the HK. L intensity distri- 
butions, we construct the following model. If we put 
a set of A B A B  graphite layers at the origin (desig- 
nated as 'A'  because the A position is in the first 
plane), the first-neighbor layer set may in principle 
be placed randomly at any lateral (x, y) position in 
the next plane separated from the origin by the c 
lattice parameter. However, its in-plane positioning 
may not be completely random but rather may be 
limited to a definite distribution of correlation 
between the graphite layer sets, i.e. WI(X)  [X  stand- 
ing for (x, y) in the plane normal to the c axis]. Here, 
we let WIn(X), the probability function of finding an 
ABAB-type layer set at X in the ruth neighbor plane 
when an A B A B  set is positioned at the origin plane, 
be represented by 

W,,(X) = ~ W m _ , ( X ' ) W 1 ( X - X ' ) d X ' ;  (1) 

that is, the case of 'Reichweite S=  1' is employed 
(Jagodzinski, 1949). We normalize WIn(X) so that 

w , . ( x )  d X  = 1. (2) 

The intensity scattered from this model structure 
can be written as 

I ( H K . L ) = Z 2  V,V* e x p [ - 2 r r i L ( s - t ) ]  

= 211(.,.I 2 + 2 Re 2 2  V~V* 
s s < t  

x exp [ -2~iL(s  - t)], (3) 

where s and t are integer indices along the c axis. V~ 

~ t  (b) 

o.o 3.0 6.0 

Fig. 6. Illustrative model  intensity calculations for selected stack- 
ing sequences.  The L dependence  of  the profile for an H, K 
reflection, H - K = 3n + 1 is shown for (a)  wa = 0.3, w d = 0.7; 
(b) w b =0-3,  w a  =0.7 ;  (c) w,. = 0.3, w d =0.7 ;  (d)  Wd = 1.00. In 
these calculations,  the lateral distribution about  each sequence 
is of  zero width (see text). 
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is expressed as V exp (-2rri~0s), where V is the struc- 
ture factor for the graphite ABAB layer set at the 
origin and ~0s = Hx~ + Ky~ is due to the in-plane trans- 
lation of the sth layer set. It should be noted that we 
have included no contribution of the FeC13 to the 
graphite Bragg peaks. While in principle such a con- 
tribution may exist (Reiter & Moss, 1986), were the 
FeCI3 molecular liquid at 623 K more than weakly 
coupled to the graphite, the random lateral graphite 
shifts that we are modeling would probably not occur. 
In other words, a strong graphite-FeCl3 interaction 
would tend to favor A-A, A-B or A-C stacking of 
sets. A weak coupling, such as obtains here, will 
produce negligible FeCI3 contributions to the graphite 
peaks. 

We further rewrite (3), assuming that the correla- 
tion length along c is much less than the crystal size, 
a s  

I(HK.L)= NIVI 2+2NRe E (KV*+,.)exp(2~riLm) 
m > 0  

x exp (27riLm)] 

=NIVI 2 [l+2Re,.>o ~ W*(H,K)  

x exp (2~iLm)], (4) 

Win(/4, K ) = ~ ~" W.,(X) exp [ - 2  7ri( Hx + Ky)] dx dy. 

(5) 

Here, the double summation in (3) is replaced by a 
single summation over m indicating the inter-set dist- 
ance. X = (x, y) (x and y being continuous variables) 
and ( . . . )  means the average over s with m fixed. N 
is the total number of graphite sets. Equation (5) can 
be developed according to (1) as 

WIn(H, K)=~J Wm_, (X ' )W, (X-X ' )  

x exp [-2"n'i(Hx + Ky)] dX'  dX 

= W.,_,(H, K)W,(H, K) 

= { W,( H, K)}' .  (6) 

This Wm (H, K) is in general complex. 
If we introduce a 60 ° rotation twinning about the 

c axis into the crystal, we have 

Itwi,(HK.L)=½[I(HK.L)+ I(KH.L)]. (7) 

This also corresponds to the intensity expression in 
the case of a rotational average of intensities with the 
same radial distance in reciprocal space, as realized 
in HOPG, except for a constant factor. 

Before proceeding with the data analysis, we dis- 
play in Fig. 6 the intensity modulations for the H -  

K = 3n + 1 reflections arising from selected stacking 
sequences. Fig. 6(d) shows the perfectly disordered 
case in which every layer set can be located anywhere 
with the same probability in the next plane; (a) is 
for the case of an A-A stacking of sets in which the 
next layer set begins with exactly the A position with 
a probability of 30% with the rest distributed perfectly 
at random. Similarly, Fig. 6(b) shows an A-B stack- 
ing case with probability of 30% and (c) is for an 
A - C  stacking case (30%). 

The general features in the H - K = 3n + 1 reflec- 
tions observed with the present sample seem to be 
mainly characterized by the case in Fig. 6(a);  this is 
a mixture of an A-A sequence of first-neighbor sets 
together with a random stacking of these sets [a 
mixture of staggered symmetric, as described by Ulloa 
& Kirczenow (1986a), and random]. The progressive 
broadening of the L-dependent peak profiles with 
increasing {H, K} indices may be governed by a 
reduction of the contribution from the A-type stack- 
ing, i.e. by some distributed probability function 
around the A position in real space. Thus, we can 
compose a model structure sequence as the sum of a 
perfectly random component and a localized distribu- 
tion around the A position. By extending this idea 
more generally to the B and C positions, we have a 
probability function W,(X) as 

Wl(X) = W,(x,y)+ Wb(x--l,y -2) 

+ W c ( x - ~ , y - l ) +  Wd, (8) 

where Wp(x', y') is a distribution function damping 
with increasing distance from the x ' =  0, y ' =  0 posi- 
tion. As a reasonable form for Wp(x', y') lye choose 
Cauchy  functions and rewrite (8) as 

WI( X) = ( waa/2) exp [-ad(x,  y)] 

+ (Wbfl/2) exp [-f ld(x -} ,  y - ~-)] 

+ (wcv/2) exp [-vd(x-~,  y- i ) ]  

+Wd, (9) 

where a function d(x', y') is defined as 

d(x ' , y ' )=(x '2 -x 'y '+yn)  '/2, (10) 

representing the radial distance from the origin ( x ' =  
0, y ' =  0). Equation (9) satisfies (2) under the condi- 
tion that w, + wb + wc + Wd = 1, since (9) can be Four- 
ier transformed into Lorentzian functions as 

W,(H, K ) =  w./[1 +(27r/a)2D2(H, K)] 

+ wd[1 +(27r/fl)2D2(n, K)] 

× exp [ -27 r i (H /3  + 2K/3)] 

+ w~/[l +(2~r/ y)2D2(H, K)] 

xexp [-2~ri(2n/3+ K/3) ]  

+ waS(H, K), (11) 
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D ( H , K ) = [ 4 ( H 2 + H K + K 2 ) ]  '/2. (12) 

w,,, Wb and wc can be regarded as the total number 
density localized around each position in the xy 
plane. D(H, K)  is the radial distance in the HK plane 
in reciprocal space. 

The model intensity distributions in Fig. 6 were 
calculated by setting the parameters as follows: (a) 
w,,=0.3, Wb= We=0, Wd =0"7 and a = o o ;  (b) wb= 
0.3, w a = w c = 0 ,  wa=0"7 and /3=oo; (c) wc=0.3, 
Wa=Wb=O, Wd=0"7 and 3 '=°°;  and (d) Wa=Wb= 
W~ = 0, Wd = 1. Equation (11) suggests that the index 
dependence of the intensity distribution for H -  K = 
3n+  1 can arise from the damping factors a, /3, 3' 
where the variation among them may change the 
weight of the contribution from each component. For 
the H - K = 3n reflections, exp [ -27r i (H /3+2K/3 ) ]  
etc. in (11) are unity and there is no difference in 
intensity contribution among A-A ,  A - B  and A - C  
stacking modes. That is, those intensity distributions 
can be determined only by the simple sum of the 
three contributions, which is equal to ( 1 -  Wd). For 
the H - K = 3n + 1 reflections, the first three terms 
are independent, since the coefficients w~/ [ l+  
(27r/a)2D2(H, K)] etc. are positive. This suggests 
that an optimum set of coefficients can be determined 
as a mathematically unique solution. Thus, we can 
obtain the parameters w~, Wb, W~, a, fl and 3' by fitting 
the model intensity to the experimental profiles. 

Were the data in Fig. 5 'perfect', this fitting could 
be eiiected by a least-squares procedure. In fact, we 
were best served by limiting the number of fitting 
parameters and finding the best - most physical - 
outcome by a trial-and-error procedure. Principal 
among our assumptions, which all of the fits essen- 
tially vindicated, was that Wb = W~=0. We then 
needed only to determine two parameters: the extent 
of the laterally distributed A - A  sequence (a )  and the 
relative weight of w,, (Wd = 1 -  W~). The final fitting 
parameters are in Table 1. Figs. 5 ( a ) - ( f )  show the 
comparisons of our model calculations with the data. 

In Fig. 5(a) the agreement is quite good overall. 
We are particularly pleased with the fit about L = 0 
because it is there that the correction for the mosaic 
distribution (essentially parallel to the scan) must be 
made carefully. At L=3 .0 ,  6.0 and 9.0, there are 
asymmetric shoulders at approximately 3L= +1.0. 
These would all be symmetrical if the gallery spacing 
d s = 3 x 3 " 3 5 = 1 0 " 0 5 A .  Here we have d s = 9 . 6 5 A .  
Were we to lower d~ to - 9 . 6 0 A ,  the agreement 
between model calculation and experiment would be 
nearly perfect (more asymmetric). In Figs. 5(b), (e) 
and ( f )  for H - K  = 3n, the calculated intensity at 
L = 2  and 4 and L = 8  and 10 is larger than the 
experimental value. This seems real to us and is again 
due to a phasing of the kind noted above. Because 
the discrepancy is not crucial to our conclusions (or 
to the physics), we have left the fits as is. Perhaps the 

Table 1. Optimum W, ( H, K ) values for each ( H, K ) 
reflection profile for the calculated curves in Fig. 5 and 

resultant parameters of  the model 

F W H M ( x y )  refers to the C a u c h y  funct ion exp [ - a d ( x ,  y)]  with 
its origin at the A posi t ion,  given in units o f  the a lattice paramete r .  

( a )  O p t i m u m  W,(H, K) values 

H, K D(H, K) W~(H, K) 

l,O 1.15 0.23 
l, 1 2.00 O.lO 
2, 0 2.31 0.08 
2, l 3.06 0.05 
3, 0 3.46 0"04 
2, 2 4"00 0"03 

(b)  Resultant  pa ramete r s  

wa a w b fl wc 3' Wd F W H M  (xy) 
0-6 5'0 0 - 0 - 0.4 0"28 

worst agreement is for the 21.L scan in Fig. 5(d) 
about L = 0 and L = 3.0. While this intensity is weak 
and the mosaic effects are appreciable for higher 
(H, K), we really have no explanation for the dis- 
crepancy. 

Overall, however, we are pleased with the agree- 
ment over the six HK.L profiles in Fig. 5. Table 1 
shows that our sample contains 60% of a distributed 
A - A  sequencing of nearest-neighbor sets across an 
FeCI 3 gallery - i.e. as in Fig. 1, but with a Cauchy 
distribution whose lateral width (FWHM) is 0.28a 
or - 0 . 7  A. This A - A  stacking is mixed with a 40% 
purely random sequencing of sets (complete sliding 
randomness of the graphite sets about FeCI3). How 
this mixture is distributed in the physical crystal is 
not determined; but we would suspect that nearer the 
domain walls the randomness will spread. The broad 
Cauchy distribution is simply an attempt to character- 
ize the rather weak A - A  stacking tendency. 

IV. Discussion 

We assume with others (Ulloa & Kirczenow, 
1986a, b) that the staging model of Daumas & Herold 
(1969) (D-H model) is an appropriate description of 
the arrangement of graphite and intercalant layers in 
the GIC's. This model allows for extended domains 
of intercalant species separated by domain walls in 
a (usually) staggered configuration that allows every 
graphite gallery, on average, to possess the same 
intercalant density. The width and energy of the 
domain walls is discussed in detail by Ulloa & 
Kirczenow (1986a) who explore the importance of 
the deformation of the graphite planes, proceeding 
from one domain to another, in stabilizing a particular 
domain structure. Our present results on stage-4 
FeCI3-GIC contribute to this discussion by providing 
evidence for a more disordered stacking of graphite 
sets in accommodating the intercalant. 

It should be noted that our l l .L profile for stage 
4 is considerably more diffuse than the corresponding 
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l l.L profile reported by Metz & Schulze (1975) for 
FeCI3 intercalated in a graphite single crystal to stage 
3. This difference may be due to an intrinsic difference 
between the stacking perfection of HOPG and single- 
crystal graphite (Kan et al., 1987) in which the basi- 
cally disruptive intercalation proceeds in a more regu- 
lar (ordered) way in the crystal. It may also be due 
to the fact that the single crystals are usually quite 
small (and thin) and can reach a stable stress-free 
equilibrium more readily than the bulkier HOPG. In 
either event, our HOPG intercalation produced a 
good single-stage compound, although we have not 
done a careful Hendricks & Teller (1942) analysis 
along 00.L to test for small amounts of (uniform) 
stage mixing. This well staged sample was held at 
623 K for a period of a few weeks and did not 'heal' 
with time to produce sharper H K . L  profiles along e*. 
We must therefore assume that our sample represents 
at least a reasonably stable configuration of inter- 
calant and graphite, and it can be regarded as a good 
stage 4 as far as the short correlation length of the 
present stacking sequence is concerned. (We have 
also intercalated another sample and found basically 
the same profiles as reported here.) 

It is clear that relieving the requirement for exact 
crystalline stacking of the A B A B  sets across the FeCI3 
layers provides a degree of freedom to the formation 
of D-H domains. There is a competition between a 
registered stacking of sets across the intercalant layer, 
induced both by host-intercalant interaction and by 
the symmetry of the graphite, and the elastic effects 
at domain walls which would favor the sliding of 
bounding layers. There seems to be no calculation of 
this competition although the treatment of Ulloa & 
Kirczenow (1986a, b) could be extended to cover it. 

A physically appealing picture of such sliding dis- 
order is given by Samuelsen et al. (1985). In Fig. 11 
of their paper, they describe the shifting of the 
bounding planes about an ordered HNO3 gallery 
in the stage-2 compound. The stacking proceeds 
A / A ' B ' / B " A " / A '  ( A " = A )  whereby non-crystallo- 
graphic shifts take A to A'  etc. across the gallery. 
Samuelsen et al. (1985) postulate that the shifts follow 
a + / -  sequence to bring A back into registry with 
A"= A. In our case we make no such requirement. 
Stage 4 is defined solely by the number of graphite 
planes separating FeCI3 without regard to their lateral 
position. The loss of lateral correlation is progressive, 
as described in § III. 

The D-H model for FeCI3 has received direct cor- 
roboration from the high-resolution electron-micro- 
scope observations of Thomas, Millward, Schl6gl & 
Boehm (1980). These authors made cross-sectional 
electron micrographs to reveal directly the intercalant 
layers within the normal graphite lattice. They also 
showed some regions of domain or island formation 
with bending of the graphite planes about the inter- 
calant islands. 

Our results suggest that, either as a reasonably 
stable intermediate phase in the intercalation process, 
or as the final equilibrium D-H configuration, the 
stage-4 FeCI3-GIC may be characterized at the tem- 
perature of intercalation by a substantial amount of 
translational randomness across the FeCI3 layer. This 
translational randomness is mixed with - 6 0 %  of 
'distributed' A - A  ordering of the A B A B  sets. Such 
a nearly complete randomness of the graphite bound- 
ing planes, while somewhat suprising, has also been 
observed in COC12- and NiCI2-GIC's (Wiesler, 
Suzuki & Zabel, 1988) where the ordered acceptor 
layers are translationally incommensurate but rota- 
tionally ordered with respect to the graphite host. We 
have also quenched the encapsulated stage-4 FeC13 
compound to room temperature and examined both 
the intercalant structure and graphite stacking. Our 
initial results show clearly that, while the FeC13 has 
undergone incommensurate ordering within its 
gallery, the translational order of the graphite across 
the galleries has not substantially improved. 

We thank Professor H. Zabel for helpful dis- 
cussions. This research was supported by the National 
Science Foundation under Grant No. DMR-8603662. 
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